
Dual Serial Input PLL with 2.5-GHz Prescalers

Features

- Operating voltage 2.7V to 5.5V
- PLL1 and PLL2 operating frequency:
- 2.5 GHz with prescaler ratios of 32/33 or 64/65
 Lock detect feature
- Power-down mode $I_{CC} < 1 \ \mu A$ typical at 3.0V
- 20-pin TSSOP (Thin Shrink Small Outline Package)

Applications

The Cypress WB1315 is a dual serial input PLL frequency synthesizer designed to combine the Transmit and Receive RF frequency sections of wireless communications systems. Two 2.5-GHz prescalers, each with pulse swallow capability are included. The device operates from 2.7V and dissipates only 38 mW.

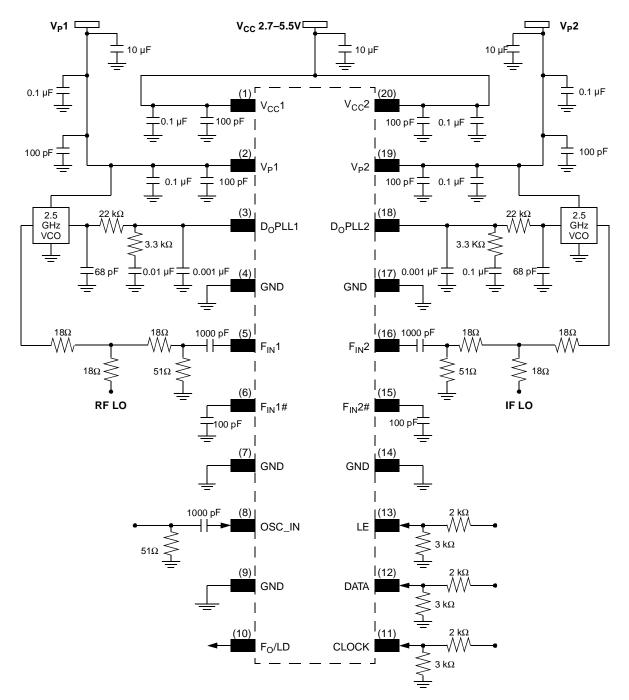


Figure 1. Application Diagram Example - WB1315 2.5-GHz Dual Hi/Hi PLL

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description			
V _{CC}	1	Р	Power Supply Connection for PLL1 and PLL2: When power is removed from both the $V_{CC}1$ and $V_{CC}2$ pins, all latched data is lost.			
V _P 1	2	Р	PLL1 Charge Pump Rail Voltage: This voltage accommodates VCO circuits with tuning voltages higher than the V_{CC} of PLL1.			
D _O PLL1	3	0	PLL1 Charge Pump Output: The phase detector gain is $I_P/2\pi$. Sense polarity can be reversed by setting the FC bit in software (via the Shift Register).			
GND	4	G	Analog and Digital Ground Connection: This pin must be grounded.			
F _{IN} 1	5	I	Input to PLL1 Prescaler: Maximum frequency 2.5 GHz.			
F _{IN} 1#	6	I	Complementary Input to PLL1 Prescaler: A bypass capacitor should be placed as close as possible to this pin and must be connected directly to the ground plane.			
GND	7	G	Analog and Digital Ground Connection: This pin must be grounded.			
OSC_IN	8	I	Oscillator Input: This input has a $V_{CC}/2$ threshold and CMOS logic level sensitivity.			
GND	9	G	Reference Ground Connection: This pin must be grounded.			
F _O /LD	10	0	Lock Detect Pin of PLL1 Section: This output is HIGH when the loop is locked. It is multiplexed to the output of the programmable counters or reference dividers in the test program mode. (Refer to <i>Table 3</i> for configuration.)			
CLOCK	11	I	<i>Data Clock Input:</i> One bit of data is loaded into the Shift Register on the rising edge of this signal.			
DATA	12	I	Serial Data Input			
LE	13	I	Load Enable: On the rising edge of this signal, the data stored in the Shift Register is latched into the reference counter and configuration controls, PLL1 or PLL2 depending on the state of the control bits.			
GND	14	G	Analog and Digital Ground Connection: This pin must be grounded.			
F _{IN} 2#	15	I	Complementary Input to PLL2 Prescaler: A bypass capacitor should be placed as close as possible to this pin and must be connected directly to the ground plane.			
F _{IN} 2	16	I	Input to PLL2 Prescaler: Maximum frequency 2.5 GHz.			
GND	17	G	Analog and Digital Ground Connections: This pin must be grounded.			
D _O PLL2	18	0	PLL2 Charge Pump Output: The phase detector gain is $I_P/2\pi$. Sense polarity can be reversed by setting the FC bit in software (via the Shift Register).			
V _P 2	19	Р	PLL2 Charge Pump Rail Voltage: This voltage accommodates VCO circuits with tuning voltages higher than the V_{CC} of PLL2.			
V _{CC} 2	20	Р	Power Supply Connections for PLL1 and PLL2: When power is removed from both the $V_{CC}1$ and $V_{CC}2$ pins, all latched data is lost.			

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit
V _{CC} or V _P	Power Supply Voltage	-0.5 to +6.5	V
V _{OUT}	Output Voltage	–0.5 to V _{CC} +0.5	V
I _{OUT}	Output Current	±15	mA
TL	Lead Temperature	+260	°C
T _{STG}	Storage Temperature	–55 to +150	°C

Handling Precautions

Devices should be transported and stored in antistatic containers.

These devices are static sensitive. Ensure that equipment and personnel contacting the devices are properly grounded.

Cover workbenches with grounded conductive mats.

Always turn off power before adding or removing devices from system.

Protect leads with a conductive sheet when handling or transporting PC boards with devices.

If devices are removed from the moisture protective bags for more than 36 hours, they should be baked at 85°C in a moisture free environment for 24 hours prior to assembly in less than 24 hours.

Recommended Operating Conditions

Parameter	Description	Test Condition	Rating	Unit
V _{CC1} , V _{CC2}	Power Supply Voltage		2.7 to 5.5	V
VP	Charge Pump Voltage		V _{CC} to +5.5	V
T _A	Operating Temperature	Ambient air at 0 CFM flow	-40 to +85	°C

Parameter	Description	Test Condition	Pin	Min.	Тур.	Max.	Unit
I _{CC}	Power Supply Current PLL1 + PLL2	$V_{CC}1 = V_{CC}2 = 3.0V$	$V_{CC}1, V_{CC}2$		14		mA
I _{PD}	Power-down Current	Power-down, $V_{CC} = 3.0V$	V _{CC} 1, V _{CC} 2		1	25	μA
F _{IN} 1, F _{IN} 2	Operating Frequency		F _{IN} 1, F _{IN} 2	100		2500	MHz
F _{OSC}	Oscillator Input Frequency		OSC_IN	2		45	MHz
Fφ	Maximum Phase Detector Frequency			10			MHz
PF _{IN} 1,	Input Sensitivity	$V_{CC} = 2.7 V$	F _{IN} 1, F _{IN} 2 ^[1]	-15		4	dBm
PF _{IN} 2		$V_{CC} = 5.5V$		-10		4	dBm
PF _{IN} 1, PF _{IN} 2		$V_{CC} = 2.7V$ to 5.5V	F _{IN} 1, F _{IN} 2 ^[2]	-15		4	dBm
V _{OSC}	Oscillator Input Sensitivity	$V_{CC} = 3.0V$	OSC_IN	0.5			V_{P-P}
I _{IH} , I _{IL}	Oscillator Input Current			-100		100	μA
V _{IH}	High Level Input Voltage	$V_{CC} = 3.0V$	DATA,	V _{CC} * 0.8			V
V _{IL}	Low Level Input Voltage		CLOCK, LE			V _{CC} * 0.3	V
I _{IH}	High Level Input Current			-10	0.5	10	μA
IIL	Low Level Input Current			-10	0.5	10	μA
V _{OH}	High level Output Voltage	V _{CC} = 3.0V, V _I = 1 mA	F _O /LD	V _{CC} * 0.8			V
V _{OL}	Low Level Output Voltage					V _{CC} * 0.2	V
ID _{OH(SO)}	ID _O High, Source Current	$V_{CC} = V_{P} = 3.0V,$	D _O PLL1		-3.8		mA
ID _{OL(SO)}	ID _O Low, Source Current	$D_O = V_P/2$	D _O PLL2		-1		mA
ID _{OH(SI)}	ID _O High, Sink Current				3.8		mA
ID _{OL(SI)}	ID _O Low, Sink Current				1		mA
ΔID _O	ID _O Charge Pump Sink and Source Mismatch	$ \begin{array}{l} V_{CC} = V_P = 3.0V, \\ D_O = V_P/2 \\ [IID_{O(SI)}I - IID_{O(SO)}I]/ \\ [1/2^* \{IID_{O(SI)}]I + IID_{O(SO)}I\}]^* 100\% \end{array} $			3	15	%
ID _O vs T	Charge Pump Current Variation vs Temperature	$-40^{\circ}C < T < 85^{\circ}C V_{DO} = V_{P}/2^{[3]}$]		5		%
I _{OFF}	High Impedance Leakage Current	$V_{CC} = V_P = 3.0V$, Loop locked, between reference spikes			±2.5		nA

Electrical Characteristics: $V_{CC} = V_P = 2.7V$ to 5.5V, $T_A = -40$ °C to +85°C, Unless otherwise specified

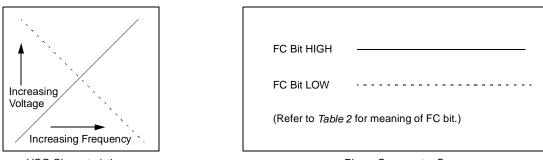
Notes:

 Notes:

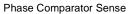
 1.
 2.0 GHz ≤ F_{IN} ≤ 2.5 GHz.

 2.
 F_{IN} < 2.0 GHz.</td>

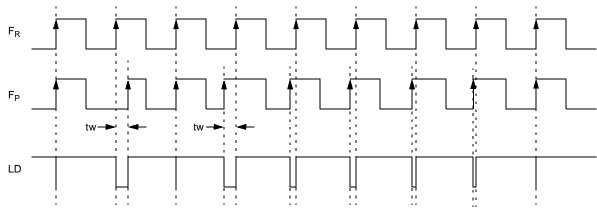
 3.
 ID₀vs T; Charge pump current variation vs. temperature.

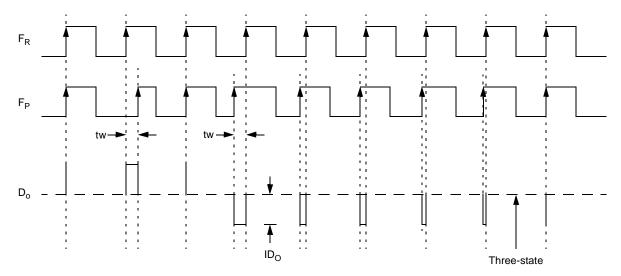

 [IID₀(SI)@T</sub>I - IID₀(SI)@25° CIJ/IID₀(SI)@25°CI * 100% and

 [IID₀(S0)@T</sub>I - IID₀(S0)@25°CIJ/IID₀(S0)@25°CI * 100%.

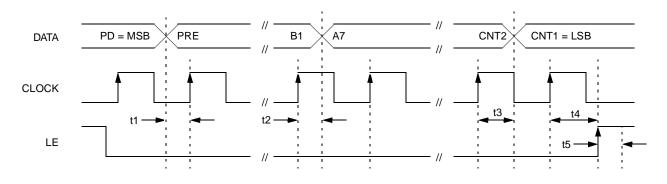


Timing Waveforms


Key:


VCO Characteristics

Phase Detector Output Waveform



D_O Charge Pump Output Current Waveform

Timing Waveforms (continued) Serial Data Input Timing Waveform^[4, 5, 6, 7]

Serial Data Input

Data is input serially using the DATA, CLOCK, and LE pins. Two control bits direct data into the locations given in Table 1.

Table 1.	Control	Configuration
----------	---------	---------------

CNT1	CNT2	Function
0	0	Program Reference 2 : R = 3 to 32767, set PLL2 (low frequency) phase detector polarity, set current in PLL2, set PLL2 three-state, set monitor selector to PLL2.
0	1	Program Reference 1: R = 3 to 32767, set PLL1 (high frequency) phase detector polarity, set current in PLL1, set PLL1 three-state, set monitor selector to PLL1
1	0	Program Counter for PLL2: A = 0 to 63, B = 3 to 2047, set PLL2 prescaler ratio, set power-down to PLL2.
1	1	Program Counter for PLL1: A = 0 to 63, B = 3 to 2047, set PLL1 prescaler ratio, set power-down to PLL1.

Notes:

t1–t5 = 50 μ s > t > 0.5 μ s. CLOCK may remain HIGH after latching in data. DATA is shifted in with the MSB first. For DATA definitions, refer to *Table 2*.

4. 5. 6. 7.

Table 2. Shift Register Configuration^[8]

Table	z. 3n		giste		nguit		-														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Refer	ence C	Coun	ter an	d Cor	nfigur	ation	Bits														
CNT1	CNT2	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	FC	IDO	TS	LD	FO
																					_
Prog	ramma	ble C	Counte	er bits	3																
CNT1	CNT2	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	PRE	PD
Bit(s)	Name		Func	tion																	
CNT1	, CNT2	2	Cont	rol Bi	ts: Dir	ects p	rograi	mmin	g data	to PL	L1 or	PLL2	•								
R1–R	15		Refei	rence	Coun	ter Se	etting	Bits:	15 bit	ts, R =	= 3 to 3	32767	.[9]								
FC			Phas	Phase Sense of the Phase Detector: Set to match the VCO polarity, H = + (Positive VCO transfer function).																	
IDO			Char	ge Pu	mp S	etting	Bit:	D _O HI	IGH =	3.8 m	A, ID	D LOV	V = 1 i	mA.							
TS			Three	e-stat	e Bit:	Three	-state	s the	D _O ou	itput fo	or PLL	2 and	I PLL1	wher	n HIGI	Н.					
LD			<i>Lock</i> locke	Dete d. Wh	<i>ct:</i> Dir en not	ects tł : locke	ne loci d, this	k dete s pin i	ect sigi s LOW	nal so V.	urce p	oin 10.	. Pin 1	0 is H	lIGH v	vith na	arrow	low ex	cursio	ons wł	nen
FO			Freq	uency	Out:	This bi	it can l	oe set	to rea	dout	refere	nce or	progr	amma	able di	videra	at the l	_D pin	fortes	stpurp	oses.
PRE			Prese	caler l	Divide	Bit:	or PL	L1 ar	nd PLL	_2: LC	DW = 3	32/33	and H	IGH =	64/6	5.					
PD			is disa disab	Power-down: LOW = power-up and HIGH = power-down. F_{IN} is at a high-impedance state, respective B counter is disabled, forces three-state at D_O outputs and phase comparators are disabled. The reference counter is disabled and the OSC input is high-impedance after both PLLs are powered down. Data can be input and latched in the power-down state.																	
A1–A	7		Swal	Swallow Counter Divide Ratio: A = 0 to 63 for both PLL1 and PLL2.																	
B1–B	11		Prog	ramm	able (Count	er Div	vide F	Ratio:	B = 3	to 204	47. ^[9]									
			1																		

Table 3. F_O/LD Pin Truth Table

FO (Bit 22)	LD (E	Bit 21)	
PLL1	PLL2	PLL1	PLL2	F _O /LD Pin Output State
0	0	0	0	Disable
0	0	0	1	PLL2 Lock Detect
0	0	1	0	PLL1 Lock Detect
0	0	1	1	PLL1/PLL2 Lock Detect
0	1	Х	0	PLL2 Reference Divider Output
1	0	Х	0	PLL1 Reference Divider Output
0	1	Х	1	PLL2 Programmable Divider Output
1	0	Х	1	PLL1 Programmable Divider Output
1	1	0	1	PLL2 Counter Reset
1	1	1	0	PLL1 Counter Reset
1	1	1	1	PLL1/PLL2 Counter Reset

Notes:

The MSB is loaded in first.
 Low count ratios may violate frequency limits of the phase detector.

Table 4. 7-Bit Swallow Counter (A) Truth Table^[10]

Divide Ratio A	A7	A6	A5	A4	A3	A2	A1
PLL1				•			1
0	Х	0	0	0	0	0	0
1	Х	0	0	0	0	0	1
	:::		:::				:::
62	Х	1	1	1	1	1	0
63	Х	1	1	1	1	1	1
PLL2					÷		
0	Х	0	0	0	0	0	0
1	Х	0	0	0	0	0	1
	:::		:::		:::		
62	Х	1	1	1	1	1	0
63	Х	1	1	1	1	1	1

Table 5. 11-Bit Programmable Counter (B) Truth Table^[11]

Divide Ratio B	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
:::	:::	:::	:::	:::	:::	:::	:::		:::	:::	:::
2046	1	1	1	1	1	1	1	1	1	1	0
2047	1	1	1	1	1	1	1	1	1	1	1

Table 6. 15-Bit Programmable Reference Counter (for PLL1 and PLL2) Truth Table^[11]

Divide Ratio R	R15	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::
32766	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
32767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ordering Information^[12]

Ordering Code	Package Name	Package Type	TR
WB1315	Х	20-pin TSSOP (0.173" wide)	Tape and Reel Option

Notes:

B is greater than or equal to A.
 Divide ratio less than 3 is prohibited. The divide ratio can be calculated using the following equation:

fvco = {(P * B) + A} * fosc / R where (A \leq B)

fvco: Output frequency of the external VCO.

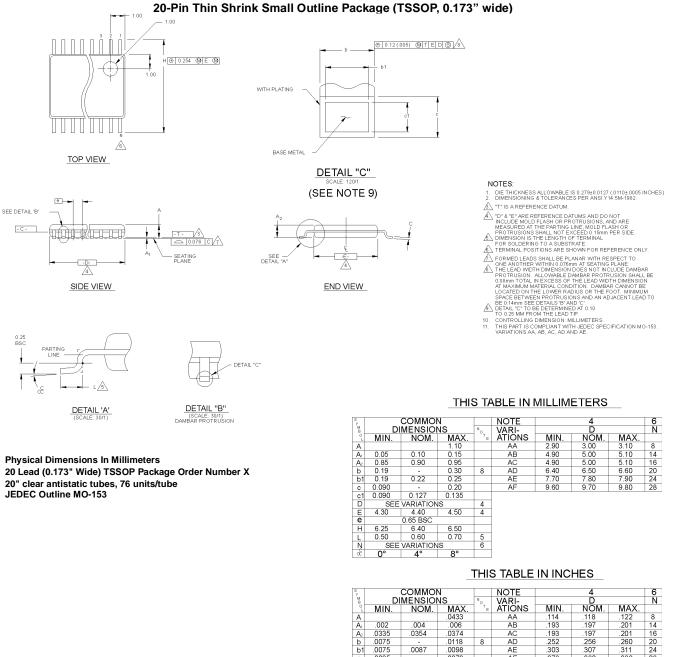
fosc: The crystal reference oscillator frequency.

A: Preset divide ratio of the 7-bit swallow counter (0 to 127).

B: Preset ratio of the 11-bit programmable counter (3 to 2047).

P: Preset divide ratio of the dual modulus prescaler (64/65 or 128/129).

R: Preset ratio of the 14-bit programmable reference counter (3 to 16383).


The divide ratio N = (P * B) + A.

12. Operating temperature range: -40°C to +85°C.

Document #: 38-00825-A

Package Diagram

DIMENSIONS			No	VARI-		D
MIN.	NOM.	MAX.	ΤE	ATIONS	MIN.	NOM.
		.0433		AA	.114	.118
.002	.004	.006		AB	.193	.197
.0335	.0354	.0374		AC	.193	.197
.0075	-	.0118	8	AD	.252	.256
.0075	.0087	.0098		AE	.303	.307
.0035	-	.0079		AF	.378	.382
.0035	.0050	.0053				
D SEE VARIATIONS			4			
.169	.173	.177	4			
e .0256 BSC						
.246	.252	.256				
.020	.024	.028	5			
N SEE VARIATIONS			6			
0°	4°	8°				
	MIN. .002 .0335 .0075 .0075 .0035 SEE .169 .246 .020 SEE	MIN. NOM. .002 .004 .0335 .0354 .0075 .0087 .0035 .0050 SEE VARIATION .169 .169 .173 .0256 BSC .246 .0256 BSC .024 .0256 BSC .024 .0256 BSC .024 .0256 BSC .024	MIN. NOM. MAX. .002 .004 .068 0.035 .0354 .0374 .0075 - .0118 .0035 .0050 .0098 .0035 .0050 .0053 .0050 .0050 .0053 .0050 .0053 .0053 .026 BSC .256 .246 .252 .256 .020 .024 .028 SEE VARIATIONS .028 .028	MIN. NOM. MAX. Te 0.042 .004 .006 0.0335 .0354 .0374 0.075 - .0118 8 0.0035 - .0079 .0098 0.035 - .0079 .0035 0.035 0.050 .0053 .0050 0.025 0.050 .0053 4 .169 .173 .177 4 .0256 BSC 2266 .020 .246 .252 .256 .028 .025 .024 .028 5 SEE VARIATIONS 6 .5 .5	MIN. NOM. MAX. T _E ÁTIÓNS .002 .004 .006 AB .033 .0374 .0433 AA .033 .0374 .066 AB .0335 .0354 .0374 .02 .0075 .0087 .0098 .02 .0035 .0079 .0433 .050 .0035 .050 .0053 .050 .0256 .050 .0256 .02 .246 .252 .256 .020 .0256 .024 .028 5 .5EE VARIATIONS 6 6	MIN. NOM. MAX. TE ÁTIÓNS MIN. .0433 AA .114 .002 .004 .006 AB .113 0335 .0354 .0374 AC .193 .0075 .018 8 AD .252 .0075 .0087 .0098 AE .303 .0035 .0035 .0050 .0063 .0035 .0050 .0053 .4 .4 .378 .378 .0035 .0050 .0053 .4 .4 .378 .378 .00256 .05C .4 .4 .46 .252 .256 .0020 .024 .028 .5 .5 .5 .246 .252 .256 .020 .024 .028 .5 .5 .5 .4 .4

386 28

VARIATION AF IS DESIGNED BUT NOT TOOLED

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.